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1 Introduction

The AdS/CFT correspondence has been used extensively to study the properties of strongly
coupled gauge theories in a controllable setting [1–3]. The correspondence has led to
important insights into the nature of strongly coupled plasmas. In particular, refs. [4–8]
established that in a large class of gauge theories with gravity duals the ratio between the
shear viscosity and the entropy is

η

s
=

~
4π

. (1.1)

This was important because it showed that there exist certain theories which realize the
small transport time scales needed to explain the elliptic flow observed at RHIC [9–16].
Since this work on shear viscosity many other transport properties of strongly coupled
plasmas have been computed using the correspondence. Of particular relevance to this
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r = rm

Probe Brane

String

r = 1

r = rh = 1 + ǫ

Figure 1. A schematic of a classical string in AdS5 corresponding to a heavy quark. The horizon
is at r = 1 in the coordinates of this work. The stretched horizon is at rh = 1 + ε and the endpoint
of the string is at rm with rm � 1. Gravity pulls downward in this figure.

work is the computation of the heavy quark drag and diffusion coefficient in N = 4 Super
Yang Mills (SYM) at large Nc and strong coupling [17–19].

Most of the time, thermal noise is neglected in AdS/CFT. This seems at odds with
the fluctuation-dissipation theorem and leads to some seemingly incorrect results from the
correspondence. For instance, it predicts the absence of long-time hydrodynamic tails [20],
zero drag on mesons [21–23], and the lack of Brownian motion of a quark string in AdS5 [17].
In many cases, the effect of thermal noise is suppressed either by large N or large λ, and
therefore these inconsistencies with field theory intuition were rationalized as an artifact
of these restrictive limits. Certain transport properties such as meson transport [24] and
momentum diffusion [18, 25, 26] are intrinsically related to the fluctuations. These trans-
port rates were computed using the correspondence by computing the drag and appealing
to the boundary fluctuation-dissipation theorem to determine the fluctuation rate. A no-
table exception to this rule is the calculation of the momentum broadening of a fast heavy
quark [25, 26] which used the Kruskal formalism to compute this diffusion rate in an out
of equilibrium setting where the fluctuation dissipation theorem does not apply [25].

The purpose of the present work is to overcome these difficulties by working through
the simplest possible system which should exhibit drag and noise in AdS/CFT. This system
is the Brownian motion of a heavy quark placed in the N = 4 SYM plasma. A quark in
AdS/CFT is represented as an open string stretching from the horizon up to a probe brane.
A schematic of the AdS geometry together with the heavy quark probe and the stretched
horizon (see below) is shown in figure 1. The various problems with large Nc and large
λ are easily summarized by the simple fact that, according to the classical equations of
motion, the string does not move in the absence of external force. Clearly this is not the
gravity dual of a Brownian particle in equilibrium with plasma.

One expects that the black brane should emit Hawking radiation inducing random
motion on the string [27]. Hawking radiation is consistent with the fluctuation-dissipation
theorem [28–33], and this consistency should lead to the correct picture of drag and diffusion
of a heavy quark in the boundary theory. This idea has been sugested by several authors but
was never clarified [34, 35]. When analyzing dissipation in the context of black holes, the no-
tion of a stretched horizon plays a central role [6, 36, 37] and this surface is shown in figure 1
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at r = rh = 1+ε. It will turn out that integrating out the fluctuations within the stretched
horizon will yield a stochastic equation of motion with the required noise at the horizon.

To keep this work self contained we have provided a fairly extensive review of the neces-
sary ingredients. Section 2 reviews the contour formalism of thermal field theory and shows
how Brownian motion arises naturally from this algebraic structure. Section 4.1 reviews
AdS/CFT in the Kruskal plane and generalizes the Kruskal/Keldysh correspondence to
σ = 0 and the ra basis which is more natural for the classical AdS/CFT setup. Section 5.1
shows that bulk to bulk contour correlation functions respect KMS relations. This result
which, while known [29, 30], was not entirely appreciated. Finally, section 5.2 presents a
derivation of the stochastic force on the horizon and the subsequent section analyzes the
results. A readable summary of the results and the bulk picture of Brownian motion is
presented in section 6.

2 Langevin dynamics

2.1 Notation and overdamped motion

In this section we will review briefly the Langevin process. Consider a heavy particle
moving with velocity ẋ, subjected to drag −ηẋ and random noise ξ

Mkin
d2x

dt2
+ η

dx

dt
= ξ ,

〈
ξ(t)ξ(t′)

〉
= 2Tη δ(t− t′) . (2.1)

Here and below we will only write the equation of motion for the x component of the motion,
ξ ≡ ξx. We also have anticipated that the strength of the noise 〈ξ(t)ξ(t′)〉 is related to
the drag η through the fluctuation dissipation theorem. Mkin is the quasi-particle mass
including in-medium modification of the mass. The diffusion coefficient can be written as

D =
T

η
. (2.2)

Let us recall how this formula follows. Consider the ultimate long time limit. In this limit
the −Mkinω

2 term may be dropped since it is proportional to frequency squared and the
motion is overdamped

η
dx

dt
= ξ , (2.3)

i.e. the dissipation exactly balances the force. Solving for the position of the quark, squar-
ing, and averaging, we find the squared displacement

〈
x2(t)

〉
= 2

T

η
t . (2.4)

In the diffusion equation a Gaussian drop of dye spreads out as
〈
x2(t)

〉
= 2Dt leading to

the identification in eq. (2.2). This overdamped limit where the drag force exactly balances
the velocity will be central in discussing the membrane paradigm and black holes.
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t = −∞− iβ

t = −∞ t = +∞

t = +∞− iσ

Figure 2. The Schwinger Keldysh contour. The fields labeled by “1” live on the upper time ordered
axis, while the fields labeled by “2” live on the lower anti-time ordered axis.

2.2 Langevin dynamics from the contour

Next we review how the Langevin equations can be derived from the real time path inte-
gral [38, 39]. The purpose here is not to track down every intricacy as there are reviews
for this purpose [40]. In the recent literature we have found refs. [41, 42] instructive. For a
heavy particle coupled to an equilibrated bath of forces the real time partition function is

Z =
〈∫

[Dx1][Dx2] ei
R

dt1Mo
Qẋ

2
1 e−i

R
dt2Mo

Qẋ
2
2 ei

R
dt1F1(t1)x1(t1)−i

R
dt2F2(t2)x2(t2)

〉
bath

, (2.5)

where the path integration is along the Schwinger-Keldysh contour [41, 43–45]. The path
integral over the “1” type coordinates (the upper line in figure 2) represents the amplitude,
while the path integral over the “2” type coordinates (the lower line in figure 2) represents
the conjugate amplitude. The path integral over the vertical pieces of the contour (which
is not explicitly written in eq. (2.5) but is implied by figure 2) represents the average over
the thermal density matrix e−βH . The choice of σ is arbitrary and reflects the fact that
the thermal density matrix is stationary and therefore the average can be performed either
at future or past infinity. An analogous dichotomy exists in the gravitational setup as
discussed in section 4.1. We have not written the path integral for the bath which is also
evaluated along the contour.

When the particle is very heavy, the action is large and the motion is quasi-classical.
The medium forces are small compared to the inertial terms and we can expand to second
order, average over the bath, and re-exponentiate to find

Z =
∫

[Dx1][Dx2]ei
R

dt1Mo
Qẋ

2
1 e−i

R
dt2Mo

Qẋ
2
2e−

1
2

R
dtdt′xs(t)[〈F(t)F(t′)〉]ss′xs′ (t′) . (2.6)

Here the matrix of contour ordered correlation functions is

[〈F(t)F(t′)
〉]
ss′
≡ i
[

G11(t, t′) −G12(t, t′)
−G21(t, t′) G22(t, t′)

]
, (2.7)

where for instance G12(t, t′) = 〈F1(t)F2(t′)〉 is the average of the forces over the partition
function of the bath. The relation to the operator formalism is the following: we define
the time dependent operators

F̂1(t) = eiHtF̂(0)e−iHt , F̂2(t) = e+iH(t−iσ)F̂(0)e−iH(t−iσ) , (2.8)
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and then the correlation functions are

iG11(t, t′) =
〈
T F̂1(t) F̂1(t′)

〉
, (2.9a)

iG12(t, t′) =
〈
F̂2(t′) F̂1(t)

〉
, (2.9b)

iG21(t, t′) =
〈
F̂2(t) F̂1(t′)

〉
, (2.9c)

iG22(t, t′) =
〈
T̃ F̂2(t) F̂2(t′)

〉
. (2.9d)

The KMS condition relates the different time orderings so there is really only one
independent function which can be taken to be the retarded Green function

iGR(t) = θ(t)
〈

[F̂(t), F̂(0)]
〉

bath
. (2.10)

Using completeness and KMS relations it can be shown that

iG11(ω) = + iReGR(ω)− (1 + 2n)ImGR(ω) , (2.11a)

iG22(ω) =− iReGR(ω)− (1 + 2n)ImGR(ω) , (2.11b)

iG12(ω) =− 2neωσImGR(ω) , (2.11c)

iG21(ω) =− 2(1 + n)e−ωσImGR(ω) . (2.11d)

Hidden in these relations is the inter-relation between the drag and noise. Almost all
applications of real time thermal field theory have relied upon a rewritten version of the
path integral known as the ra formalism (see, e.g., refs. [41, 45–47]). (Of particular note
is the next to leading order computation of the heavy quark diffusion coefficient in weakly
coupled N = 4 SYM which relied exclusively on the ra setup [46].) Here and below we
take σ = 0 and the average over the initial density matrix is entirely in the past. Since in
a quasi classical limit the amplitude is not very different from the conjugate amplitude we
define the retarded (r) and advanced fields (a) for the particle and also for the forces

xr =
x1 + x2

2
, xa = x1 − x2 , Fr =

F1 + F2

2
, Fa = F1 −F2 . (2.12)

xa should be considered a small parameter in the classical limit [47]. Effecting this trans-
formation we find

Z =
∫

[Dxr][Dxa]e
−i

R
dtMo

Qxaẍr−
R

dtdt′xa(t)iGR(t,t′)xr(t′)− 1
2
xa(t)Gsym(t,t′)xa(t′) . (2.13)

We have defined the propagators

Gsym(t, t′) =
〈Fr(t)Fr(t′)〉 =

1
2

〈
{F̂(t), F̂(t′)}

〉
, (2.14a)

iGR(t, t′) =
〈Fr(t)Fa(t′)〉 = θ(t)

〈
[F̂(t), F̂(0)]

〉
, (2.14b)

iGA(t, t′) =
〈Fa(t)Fr(t′)〉 = −θ(−t)

〈
[F̂(t), F̂(0)]

〉
, (2.14c)

– 5 –
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made use of the familiar contour relationships

Gsym =
i

4
[G11 +G22 +G12 +G21] , (2.15a)

iGR =
i

2
[G11 −G22 +G21 −G12] , (2.15b)

iGA =
i

2
[G11 −G22 −G21 +G12] , (2.15c)

0 = G11 +G22 −G12 −G21 , (2.15d)

and also have used the reality relation between the advanced and retarded propagators

GA(t) = GR(−t) , GA(ω) = G∗R(ω) . (2.16)

The KMS relations become simply the canonical form of the fluctuation dissipation theorem

Gsym(ω) = −(1 + 2n)ImGR(ω) . (2.17)

In Fourier space the path integral is simply

Z =
∫

[Dxr][Dxa] exp
(
−i
∫

dω
2π
xa(−ω)[−Mo

Qω
2+GR(ω)]xr(ω)

)
e−

1
2

R
dω
2π
xa(−ω)[Gsym(ω)]xa(ω) .

(2.18)
After Fourier transforming the Gaussian by introducing a noise variable,

e−
1
2

R
dω
2π
xa(−ω)[Gsym(ω)]xa(ω) =

∫
[Dξ]e+i

R
xa(−ω)ξ(ω) e

− 1
2
ξ(−ω)ξ(ω)
Gsym(ω) , (2.19)

the partition function reads

Z =
∫

[Dxr][Dxa][Dξ]e
− 1

2

R
dω
2π

ξ(−ω)ξ(ω)
Gsym(ω)

× exp
(
−i
∫

dω
2π
xa(−ω)

[−Mo
Qω

2xr(ω) +GR(ω)xr(ω)− ξ(ω)
])

. (2.20)

At this point one may integrate over xa(−ω) yielding the path integral

Z =
∫

[Dxr][Dξ]e
− 1

2

R
dω
2π

ξ(−ω)ξ(ω)
Gsym(ω) δω

[−Mo
Qω

2xr(ω) +GR(ω)xr(ω)− ξ(ω)
]
. (2.21)

This equation means that the partition function is simply an average over the classical
trajectories under the influence of a random colored force,[−Mo

Qω
2 +GR(ω)

]
x(ω) = ξ(ω) , 〈ξ(−ω)ξ(ω)〉 = Gsym(ω) = −(1 + 2n) ImGR(ω) .

(2.22)
In time this equation reads

Mo
Q

d2x

dt2
+
∫ t

dt′GR(t, t′)x(t′) = ξ(t) ,
〈
ξ(t)ξ(t′)

〉
= Gsym(t, t′) , (2.23)

which is a generalized Langevin equation with the drag and corresponding noise [48, 49].
One method to implement such colored noise on the computer has been given in ref. [50].

– 6 –
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At small frequencies we can expand the retarded Green function to ω2

GR(ω) = −iωη −∆Mω2 , (2.24)

and then the effective equation of motion is the original Langevin equation

Mkin
d2x(t)
dt2

+ η
dx(t)
dt

= ξ(t) ,
〈
ξ(t)ξ(t′)

〉
= 2Tη δ(t− t′) , (2.25)

where we have defined the kinetic mass as Mkin(T ) = Mo
Q + ∆M .

3 Review of trailing strings

Our purpose here is to collect some of the results from the AdS/CFT correspondence on
the drag and diffusion of heavy quarks [17–19]. A canonical choice of coordinates for the
metric of black hole AdS5 (which we will denote with bars) is

ds2
5 =

r̄2

L2

[−f(br̄)dt2 + dx2
]

+
L2dr̄2

f(br̄)r̄2
, (3.1)

with f(r) = 1− 1/r4. Here b is the inverse horizon radius which is related to the Hawking
temperature, b = 1/πTL2. We will use a different set of conventions defining r ≡ br̄, such
that r is a measure of energy in units of πT

ds2 = (πT )2L2
[−r2f(r)dt2 + r2dx2

]
+
L2dr2

f(r)r2
. (3.2)

We are considering the dynamics of very massive quark which is represented in AdS5 by
a long string stretching from the horizon upwards towards the AdS boundary terminating at
rm as illustrated in figure 1. This straight string is a solution to the classical Nambu-Goto
equations of motion. Then we consider small fluctuations around this long straight string.

The action for these fluctuations is (see appendix A)

S = −
∫

dtdr
[
m+

1
2
To(r)(∂rx)2 − m

2f
(∂tx)2

]
, (3.3)

where

To(r) =
(πT )3L2

2π`2s
fr4 =

(√
λπ2T 3/2

)
fr4 , (3.4)

has the meaning of the local tension, and

m =
(πT )L2

2π`2s
=

√
λT

2
, (3.5)

is mass per unit r. The zero temperature mass of the quark Mo
Q = mrm. The speed of

waves on the string is cs =
√
To(r)f/m = πTfr2 and therefore waves propagate from

rh = 1 + ε to the boundary in a time of order ∼ 1/πT log(1/ε).

– 7 –
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For a prescribed boundary value xo(ω) we can solve for the classical waves on the
string by imposing retarded boundary conditions at the horizon. The classical equations
of motion after Fourier transforming in time are

∂r
(
To(r)∂rx(ω, r)

)
+
mω2

f
x(ω, r) = 0 . (3.6)

We will define Fω(r) as the retarded boundary to bulk propagator, i.e. the solution
which satisfies

lim
r→rm

Fω(r) = 1 ,

and retarded boundary conditions.
The waves on the string due to the sinusoidal motion of the end point of the string are

xo(ω, r) = xo(ω)Fω(r) = xo(ω) +
−iωxo(ω)

(2πT )
[
tan−1 (z)− tanh−1 (z)

]
+O(ω2) , (3.7)

with z ≡ 1/r. The term multiplying the velocity −iωxo(ω) is the “trailing string” solution
of refs. [17, 19]. (In writing this equation we have assumed that we are not exponentially
close to the horizon, i.e. ω log(1/ε) � πT .) Thus to lowest order the string trails behind
the sinusoidal motion according to the expected form. The next term in this series is
proportional to the acceleration and is analyzed in appendix A.

The retarded force-force correlator is found by taking the boundary limit [18, 51]

GoR ≡ lim
r→rm

To(r)F−ω∂rFω = −Mo
Qω

2 +GR(ω) , (3.8)

where Mo
Q is the zero temperature quark mass, and the term −Mo

Qω
2 arises from the

“divergent” part of the boundary limit. Then using To(r) given above and the retarded
solution given in eq. (3.7) and appendix A, we find

GR(ω) = −iωη −∆Mω2 , (3.9)

with

η =
1
2

√
λπT 2 , (3.10)

∆M = −
√
λT

2
. (3.11)

As discussed above, the field theory interpretation from this form for the retarded force-
force correlator is that the quark obeys the stochastic motion in eq. (2.23) with the specified
transport coefficient η (first computed in ref. [17–19]) and in medium mass shift ∆M (first
computed in ref. [17]). The primary aim of this work is to show how this stochastic equation
is derived in AdS/CFT and to give a bulk picture to the stochastic process.

Before taking up this enterprise we make the following technical notes about the solu-
tions to the bulk equations of motion eq. (3.6):

1. The conjugate solution satisfies F ∗ω = F−ω and obeys advanced boundary conditions.
When constructing solutions we note that ImFω(r) obeys the same differential equa-
tion but is normalizable, i.e. ImF (r)→ 0 as r →∞.

– 8 –
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2. The imaginary part of the retarded Green function,

ImGR(ω) =
To(r)

2i
[F−ω(r)∂rFω(r)− Fω(r)∂rF−ω(r)] , (3.12)

can be evaluated at any radius. This is because the term in square brackets is
the Wronskian of the differential equation which depends on r in a particular way
which precisely cancels the leading To(r) factor. This fact will be used repeatedly
in section 5.3.

3. When evaluating the evolution of perturbations in the bulk, it is often very useful
to define the retarded bulk to bulk propagator. Many authors (e.g. refs. [52, 53])
have defined a Green function which is infalling at the horizon and normalizable
at the boundary

Gret(ω, r, r̄) =
ImFω(r)F (r̄)θ(r, r̄) + Fω(r)ImFω(r̄)θ(r̄, r)

To(r̄)Wret(r̄)
, (3.13)

where we have defined the retarded Wronskian×To(r)

To(r)Wret(r) = To(r)
[
ImF ′(r)F (r̄)− F ′(r)ImF (r)

]
,

= −ImGR(ω) . (3.14)

Note again this combination is proportional to the retarded force-force correlator and
is independent of r.

4 The boundary picture of stochastic motion

4.1 AdS/CFT on the contour

In this section we review how the Schwinger-Keldysh formalism is constructed in AdS/CFT
by using the full Kruskal structure of the black hole. Here we will extend the results of
ref. [54] only slightly to show how the arbitrary σ of the contour is present in the Kruskal
formalism. We will then specialize to σ = 0 and indicate how the results appear in the
ra basis. The Kruskal/Keldysh correspondence was based on the pioneering work on
Hawking radiation [28–33].

The Kruskal plane of the eternal black hole is exhibited in figure 3 (see appendix B
for a summary of the Kruskal conventions adopted here.) Outside of the horizon there
are two causally disconnected space time geometries both of which are asymptotically
AdS. The right quadrant corresponds to the amplitude of the CFT while the left quadrant
corresponds to the conjugate amplitude of the CFT. The dynamics of the two AdS/CFT’s
are coupled through boundary conditions at past and future infinity.

AdS/CFT in practice amounts to a four step procedure.

1. First determine a solution to the classical equations of motion with certain boundary
values.

– 9 –
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V < 0

U = 0

U < 0

V > 0

V > 0

U > 0

U > 0

V < 0

U < 0

L R

t = +∞t = −∞

t = +∞ t = −∞

V = 0

Figure 3. The full Kruskal plane. The right quadrant corresponds to the amplitude of the field
theory (the “1” axis) while the left quadrant corresponds to the conjugate amplitude of the field
theory (the “2” axis).

2. In order to uniquely specify this solution one must specify horizon boundary
conditions.

3. This solution is then substituted into the classical action which reduces to a
boundary term.

4. Finally, variation with respect to the boundary values determines the correlation
functions of the CFT.

In the full Kruskal plane these standard AdS/CFT steps are the following.

1. First the equations of motion for the fluctuations on the string are solved in the full
Kruskal plane with the boundary values

lim
r1→rm

x(ω, r1) = xo1(ω) , (4.1a)

lim
r2→rm

x(ω, r2) = xo2(ω) . (4.1b)

Here r1 and r2 are the radial coordinates in the right and left quadrants respectively.
The general solutions in the right and left quadrants are

x(ω, r1) = a(ω)Fω(r1) + b(ω)F ∗ω(r1) , (4.2)

x(ω, r2) = c(ω)Fω(r2) + d(ω)F ∗ω(r2) . (4.3)

Since we have only two boundary constraints given by eq. (4.1), to uniquely specify
the solution we must specify horizon boundary conditions.
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2. The horizon boundary conditions specify the connection between the solution in the
right quadrant and the solution in the left quadrant. We note that near the horizon
the retarded and advanced solutions behave as

e−iωtFω(r1) ∼ e−i
ω

2πT
log(V ) , (4.4)

e−iωtF ∗ω(r1) ∼ e+i ω
2πT

log(−U) . (4.5)

The horizon conditions proposed in ref. [54] are that the solution should be analytic
in the lower V plane and upper U plane. This physical choice is based on the intuition
that if the right universe is to represent the time-ordered amplitude of the CFT, then
the infalling mode (Fω) should be positive energy (analytic in in lower V ) while the
outgoing mode (F ∗ω) should be negative energy (analytic in upper U). For instance
in a free scalar theory the Green function at zero temperature is

iG11(t, t′) =
1

2Ep
e−iEp(t−t′)θ(t, t′) +

1
2Ep

e+iEp(t−t′)θ(t′, t) , (4.6)

and therefore a one type source J1(t′) will produce fields with positive energy wave
at later time and induce negative energy wave at an earlier time. With this choice
Herzog and Son analytically continue from the right quadrant (V > 0, U < 0) to
the left quadrant (V < 0, U > 0) yielding from the solution in the right quadrant
x(ω, r1) the solution in the left quadrant

x(ω, r2) = a(ω) e−ω/2T Fω(r2) + b(ω) e+ω/2TF ∗ω(r2) . (4.7)

Now the values of a(ω) and b(ω) can be determined from the boundary values xo1(ω)
and xo2(ω). The resulting solution ultimately reproduces the contour correlation func-
tions for the specific choice of σ = β/2 [54].

Here we will generalize their work slightly by extending V → |V |e−iθ and −U →
|U |e−i(2π−θ); in the original work θ = π. With this choice for the analytic continuation
of U and V , the radius is fixed since (−U)V is changed ultimately by a factor e−2πi

(note eq. (B.4)). We will find that this choice for the analytic continuation reproduces
the contour relations for arbitrary σ. Loosely speaking, the difference between these
choices is a decision about whether to perform the thermal average at past infinity
V = 0 or future infinity U = 0. We do not have a sharper physical explanation for
this choice at this point. With this analytic continuation the infalling and outgoing
solutions behave as

Fω(r1) → e−ωσFω(r2) , (4.8)

F ∗ω(r1) → e+ω/T e−ωσF ∗ω(r2) , (4.9)

where we have defined1

σ =
θ

2πT
. (4.10)

1Of course this definition will later turn out to correspond to the usual field theory definition.
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The solution in eq. (4.2) when analytically continued to the left quadrant behaves as

x(ω, r2) = a(ω) e−ωσFω(r2) + b(ω) e+ω/T e−ωσF ∗ω(r2) . (4.11)

Now as before we can solve for the coefficients a(ω) and b(ω) in terms of the xo1(ω)
and xo2(ω) yielding the result

a(ω) = xo1(ω)(1 + n(ω))− xo2(ω)eωσn(ω) , (4.12a)

b(ω) = xo2(ω)eωσn(ω)− xo1(ω)n(ω) . (4.12b)

The solution is now fully specified by its right and left quadrant solutions, eq. (4.2)
and eq. (4.11).

3. Now we can substitute the solution into the boundary action

Sbndry = −To(rm)
2

∫
r1

dω
2π
x1(−ω, r1)∂rx1(ω, r1)+

To(rm)
2

∫
r2

dω
2π
x2(−ω, r2)∂rx2(ω, r2) ,

(4.13)
and determine the generating function

iSbndry = −1
2

∫
dω
2π
xo1(−ω) [+iReGoR − (1 + 2n)ImGoR]xo1(ω) (4.14)

+xo2(−ω) [−iReGoR − (1 + 2n)ImGoR]xo2(ω)

−xo1(−ω)
[−2ne+ωσImGoR

]
xo2(ω)− xo2(−ω)

[−2(1+n)e−ωσImGoR
]
xo1(ω)

Here we identified the retarded Green function with

GoR(ω) = To(r)
F−ω(r)∂rFω
|F (ω, r)|2

∣∣∣∣
r=rm

. (4.15)

4. Now by taking variations with respect to xo1 and xo2 one can reproduce the full contour
correlation functions which obey the appropriate KMS relations in eq. (2.11).

4.2 Simple results in the ra setup

Before closing this review of ref. [54] let us show how these results work out in the ra basis.
Specializing to σ = 0 and introducing the bulk r and a fields

xr(ω, r) =
x1(ω, r) + x2(ω, r)

2
, xa(ω, r) = x1(ω, r)− x2(ω, r) . (4.16)

we find that the bulk fields are rather simply related to the boundary fields in the ra setup

xa(ω, r) = F ∗ω(r)xoa(ω) , (4.17a)

xr(ω, r) = Fω(r)xor(ω) + i(1 + 2n) ImFω(r)xoa(ω) . (4.17b)

The boundary action in the ra formalism after rewriting eq. (4.13) is

Sbnry = −To(rm)
2

∫
rm

dω
2π

[xa(−ω, r)∂rxr(ω, r) + xr(−ω, r)∂rxa(ω, r)] . (4.18)
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Substituting the solutions given in eq. (4.17) gives the desired result in the ra setup

iSbnry = −i
∫

dω
2π
xoa(−ω) [GR(ω)]xor(ω)− 1

2

∫
dω
2π
xoa(−ω) [Gsym(ω)]xoa(ω) , (4.19)

with Gsym(ω) = −(1 + 2n)ImGR(ω). Of course this could be found simply by changing
variables in eq. (4.14), but it is hoped that the relatively simple causal relations in
eq. (4.17) will be useful in understanding non-thermal thermal fluctuations of AdS/CFT
in an out of equilibrium setting [55].

4.3 Stochastic motion on the boundary

Now we will show how these results lead directly to stochastic motion on the boundary. A
formal path integral for the string is

Z =
∫

[Dxo1 Dx1] [Dxo2 Dx2] eiS1−iS2 , (4.20)

where in the right quadrant of the Kruskal plane, Dxo1 is a temporal path for the string
endpoint, Dx1 is a bulk path integral for the body of the string, and the analogous “2”
symbols are defined for the left quadrant. Slightly more explicitly

[Dxo1] =
∏
t

dxo1(t) , [Dx1] =
∏
t,r

dx(t, r) . (4.21)

Imagine integrating out the bulk coordinates to find an effective action for the string end-
points. In a Gaussian approximation the integrals can be done. The result is a determi-
nant times the exponential of the action evaluated with the classical solution which passes
through the two endpoints and which obeys the appropriate horizon boundary conditions.
This is of course simply the boundary action

Soeff = −To(rm)
2

∫
r1

dω
2π
x1(ω, r1)∂rx1(ω, r1) +

To(rm)
2

∫
r2

dω
2π
x2(−ω, r2)∂rx2(ω, r2) , (4.22)

which can be evaluated using the results of the previous section

iSoeff = −i
∫

dω
2π
xoa(−ω)

[−Mo
Qω

2 +GR(ω)
]
xor(ω)− 1

2

∫
dω
2π

xoa(−ω) [Gsym(ω)]xoa(ω) .

(4.23)
Now the partition function for the string endpoint is

Z =
∫

[DxorDx
o
a] e

iSoeff . (4.24)

At this point we recognize the same partition function as discussed in the introduction,
and following the discussion after eq. (2.20) we conclude that the string endpoint obeys
the expected equations of motion[−Mo

Qω
2 +GR(ω)

]
xo(ω) = ξo(ω) , 〈ξo(−ω)ξo(ω)〉 = Gsym(ω) = −(1 + 2n) ImGR(ω) .

(4.25)
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5 The bulk picture of stochastic motion

In the previous section we integrated out all degrees of freedom of the string, except for
the endpoints, to obtain the effective action for the endpoint coordinates. In this section
we will integrate out only the degrees of freedom inside a stretched horizon. In this way
we will obtain an equation of motion for a string with a friction and a noise acting on the
string at the stretched horizon.

5.1 Bulk to bulk correlators in contour AdS/CFT

In this section we wish to compute the bulk to bulk correlators in the Kruskal formalism of
AdS/CFT. For simplicity consider correlation functions of disturbances along an infinitely
long string with fixed endpoints stretching from the horizon to the boundary. The action
for these fluctuations has been given in eq. (3.3). We will consider the generating function

Z[J1, J2] =
∫

[Dx1][Dx2] eiS1−iS2 ei
R

dt1dr1J1(t1,r1)x1(t1,r1) e−i
R

dt2dr2 J2(t2,r2)x2(t2,x2) , (5.1)

where as before [Dx1] indicates a bulk path integral. We wish to compute all bulk two
point functions

[iG(ω, r, r̄)]ss′ ≡
∫

dt eiωt [iG(t, r, r̄)]ss′ , (5.2)

with

[iG(t− t̄, r, r̄)]ss′ ≡
1
i2

δ2 lnZ
δJs(t, r)δJs′(t̄, r̄)

≡ i
[
G11 −G12

−G21 G22

]
. (5.3)

To this end we note that the classical equations of motion are[
∂r
(
To(r)∂rx(ω, r)

)
+
mω2

f
x(ω, r) + J(ω)

]
= 0 , (5.4)

where J(ω) is the external force per unit length on the string. Our task is to construct a
Green function of this differential equation[

∂r
(
To(r)∂rG(r, r̄)

)
+
mω2

f
G(r, r̄)

]
= δ(r − r̄) . (5.5)

Given two solutions of the differential equation g>(r) and g<(r) the Green function is easily
constructed

G(r, r̄) =
g>(r)g<(r̄)θ(r, r̄) + g<(r)g>(r̄)θ(r̄, r)

To(r̄)W (r̄)
, (5.6)

where the Wronskian is

W (r̄) = g′>(r̄)g<(r̄)− g′<(r̄)g>(r̄) . (5.7)

In the present case we wish to construct the Green function in the full Kruskal plane.
We should find two solutions which obey the boundary conditions. These boundary condi-
tions are that g>(r) should be normalizable as r →∞ in the right quadrant of the Kruskal
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plane. Similarly g<(r) should be normalizable as r →∞ in the left quadrant of the Kruskal
plane. In formulas

g>(r1) = ImFω(r1) (right quadrant) , (5.8)

and
g<(r2) = ImFω(r2) (left quadrant) . (5.9)

Using the boundary conditions of the real time AdS/CFT we extend across the horizon in
the Kruskal plane. Writing ImF (r1) = (F (r1)−F ∗(r1))/2i and analytically continuing g>
according to eq. (4.8) we have

g>(r2) =
1
2i

[
e−σωFω(r2)− eω/T e−σωF ∗ω(r2)

]
(left quadrant) . (5.10)

Similarly we realize that the analytic continuation of g<(r2) to r1 is

g<(r1) =
1
2i

[
e+σωFω(r1)− e−ω/T eσωF ∗ω(r1)

]
(right quadrant) . (5.11)

Now different correlators can be evaluated in a straightforward manner. Evaluating
G11(r1, r̄1) using eq. (5.6), eq. (5.8), and eq. (5.11), and for simplicity taking r1>r̄1, we have

G11(r1, r̄1) =
g>(r1)g<(r̄1)

W (r̄1)
,

= ReGret(r1, r̄1) + i(1 + 2n)ImGret(r1, r̄1) . (5.12)

Here n(ω) = 1/(eω/T − 1) is the thermal occupancy factor and Gret(r, r̄) is given in
eq. (3.13). In deriving this result we note the intermediate results

W (r̄1) = e+ωσ(1− e−ω/T )
1
2i
Wret(r̄1) , (5.13a)

W (r̄2) = e−ωσ(e+ω/T − 1)
1
2i
Wret(r̄2) , (5.13b)

and the much used identity n(−ω) = −(1 + n(ω)).
Continuing in this way, we summarize these results for the bulk to bulk correlators

iG11(r, r̄) = + iReGret(r, r̄)− (1 + 2n)ImGret(r, r̄) , (5.14a)

iG22(r, r̄) =− iReGret(r, r̄)− (1 + 2n)ImGret(r, r̄) , (5.14b)

iG12(r, r̄) =− 2n e+ωσImGret(r, r̄) , (5.14c)

iG21(r, r̄) =− 2(1 + n) e−ωσImGret(r, r̄) . (5.14d)

These are the familiar spectral and KMS relations between the retarded correlator and
various contour correlation functions. It is reassuring that these thermal relations between
the bulk to bulk correlators arise so easily in the Kruskal formalism although the result is
not particularly new or surprising [29, 30].

To show that these correlation functions are indeed correctly normalized, one can shift
the fields in the usual way

xs(ω, r) = δxs(ω, r)−
∫

dr̄ [iG(ω, r, r̄)]ss′ Js′(ω, r̄) , (5.15)
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and determine generating functional

Z[J1, J2] = Z[0, 0] exp
(
−1

2

∫
dω
2π

drdr̄ Js(−ω, r) [iG(ω, r, r̄)]ss′ Js′(ω, r̄)
)
. (5.16)

5.2 Bulk picture of Brownian motion

We will now develop a bulk picture of the Brownian motion. Rather than integrating out
the entire bulk to determine an effective action for the boundary point, we will introduce a
stretched horizon and integrate out only the fields which are inside the stretched horizon,

rh ≡ 1 + ε . (5.17)

The path integral for the fluctuations of the string is

Z =
∫ [

Dxo1 Dx1 Dxh1
] [

Dxo2 Dx2 Dxh2
]

[Dxε1 Dxε2] eiS1−iS2eiS
ε
1−iSε2 . (5.18)

As before for the right quadrant for example, Dxo1 is the temporal path integral of the
boundary endpoint of the string, Dx1 indicates the bulk path integral of the string, Dxh

denotes the temporal path integral of the string point on the stretched horizon, and Dxε1 is
the bulk path integral inside of the stretched horizon. S1 is the action integrated outside
of the stretched horizon while Sε1 is the action integrated inside the stretched horizon.

In a Gaussian approximation the integrals over the bulk coordinates inside the
stretched horizon can be done. The result is a field independent determinant times the
exponential of the action evaluated with the classical solution which passes through xh1(ω)
and xh2(ω). This solution should also obey the contour boundary conditions given above.
Substituting a classical solution into the action reduces to a boundary term at the horizon
which gives an effective action for the horizon dynamics

Sheff = −To(rh)
2

∫
rh1

xε1(−ω, r) ∂rxε1(ω, r)
dω
2π

+
To(rh)

2

∫
rh2

xε2(−ω, r) ∂rxε2(ω, r)
dω
2π

. (5.19)

Going through the same procedure outlined above we have the same structure for the
effective horizon action

iSheff = −i
∫

dω
2π

xha(−ω)
[
GhR(ω)

]
xhr (ω)− 1

2

∫
dω
2π
xha(−ω)

[
−(1 + 2n)ImGhR(ω)

]
xha(ω) ,

(5.20)
but the retarded correlator is to be evaluated and normalized at the horizon. Using the
near horizon behavior of the retarded solution Fω(r) ∼ (1− 1/r4)−iω/(4πT ) and To(r) from
eq. (3.4) we find

GhR(ω) =
To(r)
|F (ω, r)|2F−ω(r)∂rFω(r)

∣∣∣∣
r=rh

,

=− iωη . (5.21)

The full partition function is now

Z =
∫ [

Dxo1 Dx1 Dxh1
] [

Dxo2 Dx2 Dxh2
]
eiS1−iS2eiS

h
eff . (5.22)
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Now in eq. (5.22) we have the two halves of the Kruskal plane coupled by the effective
action of the horizon. We will show that the effect of this coupling is to give rise to thermal
noise in the bulk. We rewrite the action in the ra basis2

xr(ω, r) ≡ x1(r, ω) + x2(r, ω)
2

, xa(ω, r) ≡ x1(r, ω)− x2(r, ω) , (5.23)

and the action in the bulk is

iS1 − iS2 = −i
∫

dω
2π

dr
[
To(r)∂rxa(−ω, r) ∂rxr(ω, r)− mω2xr(ω, r)xa(−ω, r)

f

]
. (5.24)

We also follow what is now a standard procedure by introducing a horizon noise

e−
1
2

R
dω
2π
xha(−ω) [(1+2n)ωη]xha(ω) =

∫
Dξhe+i

R
ξh(ω)xha(−ω)e

− 1
2

R
dω
2π

ξh(−ω)ξh(ω)
[(1+2n)ωη] , (5.25)

with the associated statistics 〈
ξh(−ω)ξh(ω)

〉
= (1 + 2n)ωη . (5.26)

We now integrate by parts and obtain two boundary terms, one terminating at the
radius of the string endpoint rm, and one terminating at the stretched horizon rh = 1 + ε

iS1 − iS2 + iSheff =− i
∫
rm

dω
2π

xoa(−ω) [To(rm)∂rxr(ω, r)]

− i
∫
rh

dω
2π

xha(−ω)
[
−To(rh)∂rxr(ω, r)− iωηxhr (ω)− ξh(ω)

]
− i
∫

dω
2π

dr xa(−ω, r)
[
−∂r

(
To(r)∂rxr(ω, r)

)− mω2 x(ω, r)
f

]
. (5.27)

Finally integrating over xoa(−ω), xa(−ω, r), and xha(−ω) in eq. (5.22) we are left with a set
of stochastic equations as in the simple example given in section 2.2. We will record these
in the next section.

5.3 Analysis and discussion

The preceding analysis leads to three equations

1. The boundary endpoint of the string obeys the deterministic equation

− To(rm)∂rxr(ω, r) = 0 . (5.28)

This is simply the Neumann boundary condition for the free end of the string.

2. The body of the string obeys the bulk equations of motion[
∂r
(
To(r)∂rxr(ω, r)

)
+
mω2

f
xr(ω, r)

]
= 0 . (5.29)

2The label r for retarded should not be confused with the radial coordinate.
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3. Finally, the horizon endpoint obeys the stochastic equation of motion

To(rh)∂rxr(ω, r) + ξh(ω) = −iωηxhr (ω) ,
〈
ξh(−ω)ξh(ω)

〉
= ηω(1 + 2n) , (5.30)

with n(ω) = 1/(exp(ω/T )− 1). Here we remind that To(r) = (
√
λπ2T 3/2)fr4 is the local

tension in the string. The meaning of this equation is that the motion of the horizon
endpoint xhr (t) is overdamped. The resistance −ηẋh exactly balances the applied forces
which in this case are the pulling due to the string outside the horizon To(rh)∂rxr and the
random force ξh(ω) which comes from integrating out modes behind the horizon.

We now have determined a stochastic equation of motion for the endpoint of the string
on the stretched horizon. These stochastic fluctuations are transmitted by the dynamics of
the string to the boundary. We should show that the boundary endpoint of the string obeys
the expected equation of motion in its most general form, eq. (2.22). We should further
show that the symmetrized two point functions obey the expected dynamics previously
computed using the Kruskal extension of AdS/CFT

〈∆xr(−ω, r)∆xr(ω, r̄)〉 = −(1 + 2n)ImGret(ω, r, r̄) ,

= (1 + 2n)
ImFω(r)ImωF (r̄)
−ImGR(ω)

. (5.31)

First consider the average motion of the string. Averaging over the noise we find
the average string coordinates obey the usual equations of motion together with retarded
boundary conditions

η
[
4πT (1− 1/r)∂r 〈x(ω, r)〉+ iω

〈
xh
〉]

= 0 , (5.32)

where we have used the definition for To(r). This equation together with the fact that 〈xr〉
is a solution says that the average obeys the retarded boundary conditions, i.e. behaves as
(1− 1/r)−iω/4πT .

Next consider the behavior near the boundary of AdS r → rm. Here the equations of
motion guarantee that the solution is a superposition of the non-normalizable mode and
the normalizable mode which we can choose to be Fω(r) and ImFω(r) respectively

x(ω, r) = xo(ω)Fω(r) + ξo(ω)
[

ImFω(r)
−ImGR(ω)

]
. (5.33)

We also have specified the boundary value of the non-normalizable mode xo(ω) and have
recognized that ξo(ω) must be a stochastic variable since the retarded solution reproduces
the average motion. We have chosen to divide ImFω(r) by −ImGR(ω) so that the ξo(ω)
has the interpretation as the random force on the AdS boundary as we will show now.

Plugging this functional form eq. (5.33) into the Neumann boundary conditions

To(r)∂rxr|r=rm = 0 , (5.34)

yields the expected equation of motion for the endpoint[−MQω
2 +GR(ω)

]
xo(ω) = ξo(ω) . (5.35)
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Our task now is to show that 〈ξo(−ω)ξo(ω)〉 obeys the fluctuation-dissipation relation

〈ξo(−ω)ξo(ω)〉 = −(1 + 2n)ImGR(ω) . (5.36)

Returning to the horizon we have the stochastic equation of motion

To(rh)∂rxr(ω, r) + ξh(ω) = −iωηxhr (ω) . (5.37)

Substituting eq. (5.33) into this equation we solve for ξo(ω) in terms of ξh(ω). Our task is
simplified by first recognizing the origin of the first term on the right hand side

− iωη = To(rh)
F−ω(rh)∂rFω(rh)
|Fω(rh)|2 , (5.38)

so that the equation for ξo resulting from eq. (5.37) is

ξo(ω)
−ImGR(ω)

To(rh) [Fω(rh)∂rImFω − ImF (rh)∂rFω(rh)] + Fω(rh)ξh(ω) = 0 . (5.39)

The term in square brackets on the left hand side is the Wronskian of the two solutions
and when multiplied by To(r) equals +ImGR(ω) and we find

ξo(ω) = Fω(rh)ξh(ω) . (5.40)

Averaging according to the horizon statistics in eq. (5.30), recognizing its origin eq. (5.38),
and again using the Wronskian relation eq. (3.12), we determine the statistics of ξo

〈ξo(−ω)ξo(ω)〉 = −(1 + 2n)ImGR(ω) . (5.41)

Thus random force in the boundary theory obeys the expected statistics of the fluctuation-
dissipation theorem.

Finally we would like to compute the bulk two point functions

〈∆xr(−ω, r)∆xr(ω, r̄)〉 , (5.42)

where ∆xr(ω, r) denotes the deviation from the behavior in the bulk due to the motion on
the boundary ∆xr ≡ xr(ω, r)−xor(ω)Fω(r). This is straightforward using the decomposition
in eq. (5.33), and the boundary statistics in eq. (5.41); the result is

〈∆xr(−ω, r)∆xr(ω, r̄)〉 = (1 + 2n)
ImFω(r)ImFω(r̄)
−ImGR(ω)

, (5.43)

= −(1 + 2n)ImGret(ω, r, r̄) . (5.44)

This result is naturally the same as computed previously using the contour correlation func-
tion in AdS/CFT. It is also neatly consistent with the bulk fluctuation-dissipation theorem.
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To(rh)

ξh

r = rm

r = rh = 1 + ǫ

−ηẋh

Figure 4. Balance of forces on the stretched horizon. The resistive force −ηẋh precisely balances
the random force ξh and the tension To leading to overdamped motion.

6 Summary and the physical picture

6.1 Summary

In the previous section we have shown that a stochastic boundary condition emerges on the
stretched horizon after integrating out the fluctuations inside this surface (see eq. (5.30))3

To(rh)∂rx(t, rh) + ξh(t) = η ẋh(t)
〈
ξh(t)ξh(t′)

〉
= Ghsym(t− t′) . (6.1)

Here η is the drag of the horizon (or the late time drag of the quark), ξh is the random
force on the horizon endpoint, and ξh(ω) obeys the horizon fluctuation dissipation theorem

Ghsym(ω) = +(1 + 2n)ωη . (6.2)

This equation has a simple physical interpretation illustrated in figure 4. The motion of
the horizon xh(t) is overdamped, i.e. the resistive force −ηẋh exactly balances the string
force To(rh)∂rx(t, rh) and the random horizon force ξh. There is no transverse acceleration.

This stochastic force on the horizon when transmitted to the boundary leads to an
equation of motion for the endpoint of the string

MQ
d2xo

dt2
+
∫ t

GR(t− t′)xo(t′) = ξo(t) ,
〈
ξo(t)ξo(t′)

〉
= Gsym(t, t′) . (6.3)

which is the expected generalized Langevin equation in eq. (2.23). Here Gsym(ω) obeys
boundary the fluctuation dissipation relation

Gsym(ω) = −(1 + 2n)ImGR(ω) , (6.4)

and GR(ω) is the usual retarded force-force propagator computed using AdS/CFT. The
random force on the boundary ξo(t) is directly related to the random force on the horizon

3In this section the retarded r label (as in xr) is understood.
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ξh. Denoting F (t, r) the usual retarded boundary to bulk propagator, i.e. Fω(rm) = 1 on
the boundary and Fω ∼ (1−1/r)−iω/4πT near the horizon, the relation between the horizon
and boundary stochastic forces is (see eq. (5.40))

ξo(t) =
∫ t

dt′ F (t− t′, rh) ξh(t′) , (6.5)

It takes a time of order ∼ 1/(πT ) log(1/ε) for the noise from the horizon to reach the tip
of the string. ε should be considered small but not exponentially small so this time scale
is really 1/πT .

We also have a picture of the fluctuations in the bulk. The coordinate of the string in
the bulk are given by two pieces (see eq. (5.33))

x(t, r) =
∫ t

dt′F (t− t′, r)xo(t′) + ∆x(t, r) , (6.6)

which reflect the retarded response to the boundary motion xo(t′) and a deviation. The
deviation ∆x(t, r) is a random variable obeying the statistics (see eq. (5.43))〈

∆x(t, r)∆x(t′, r′)
〉

= Gsym(t− t′, r, r′) , (6.7)

where Gsym(t − t′, r, r′) is the symmetrized bulk to bulk correlator. This correlator was
computed using the Kruskal extension of the AdS/CFT and is related to the imaginary part
of the retarded bulk to bulk correlator according to a bulk fluctuation dissipation theorem

Gsym(ω, r, r′) = −(1 + 2n) ImGret(ω, r, r′) = (1 + 2n)
ImFω(r)ImFω(r′)
−ImGR(ω)

. (6.8)

The explicit form for the fluctuation amplitude in frequency space is

∆x(ω, r) = ξo(ω)
[

ImFω(r)
−ImGR(ω)

]
, (6.9)

where ξo(ω) is the boundary force.

6.2 The physical picture

Here we would like to consider the small frequency limit where an explicit analytic form
for the retarded function Fω is known and has a simple physical interpretation in terms of
trailing strings. A quark in equilibrium moves quite slowly

vth ∼
√

T

Mkin
∼ 1
λ1/4

1√
rm

, (6.10)

but it takes a long time τR for this heavy quark to randomize its velocity

τR ∼ Mkin

η
∼ rm

T
. (6.11)

(This can be seen by examining the Langevin equations and neglecting the noise.) The
distance the quark moves over this relaxation time xR is

xR ∼ vthτR ∼ 1
λ1/4 T

√
rm . (6.12)
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The dynamics that is observed depends on how the spatial xobs and temporal resolution
scales τobs of the measurement compare to these scales xR and τR.

First consider the time period over which quarks moves with nearly constant velocity v

1
T
� τobs � τR . (6.13)

For a quark moving slowly on the boundary with constant velocity v it will trail behind
it a trailing string at least on average

〈x(t, r)〉 = xo(t) + v∆xTS(r) , (6.14)

with
∆xTS(r) =

1
2πT

[
tan−1(z)− tanh−1(z)

]
, (6.15)

and z ≡ 1/r. Here we have used eq. (5.33) for retarded response to the boundary motion
and the explicit form of Fω(r) at small frequency, eq. (3.7). The term ∆xTS is the “trailing
string” solution of ref. [17, 19]. The distance between the head of the quark xo(t) and the
average body of string is of order

v∆xTS ∼ vth

T
∼ 1
λ1/4T

1√
rm

. (6.16)

This only gives the average behavior of the string. In general there is an additional
random component which in the small frequency limit is white noise; using eq. (6.9) we have

∆x ≡ x(t, r)− 〈x(t, r)〉 =
−1
η
ξo(t) ∆xTS(r) ,

〈
ξo(t)ξo(t′)

〉
= 2Tηδ(t− t′) . (6.17)

Thus we see that around this average trailing string there is a stochastic ensemble of trailing
strings which flip-flop around the head of the quark. This is illustrated above in figure 5. To
estimate the amplitude of this stochastic process, let us imagine implementing this process
on the computer where one would take time step ∆t and then the width of the Gaussian pro-
cess would be 〈ξoξo〉 = 2Tη/∆t. Taking the width ∆t to be of order the memory time scale
1/T , we estimate that the string fluctuates around the average trailing string by an amount√

(∆x)2 ∼ 1√
η
∼ 1
λ1/4T

, (6.18)

This is larger than the average deviation v∆xTS from the endpoint since it is not suppressed
by 1/

√
rm. Thus the average trailing string is nearly straight and the noise consists of a

flip flopping trailing string solution. Notice the minus appearing in front of the eq. (6.17).
This is physically correct. When the random force on the boundary quark is positive, the
string is out in front of the quark. When the random force is negative, the string trails
behind the quark.

Now let us consider the ultimate long time limit where the time scales and spatial
scales on which we are observing the quark are large compared to the relaxation time τR
and relaxation length xR

τobs � τR , xobs � vthτR >∼
1
λ1/4

1
T

√
rm . (6.19)
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xobs ∼ 1
λ1/4T

r = 1

r = rm

t1

t2

t3

average

1
T ≪ τobs ≪ τR

xR ≪ xobs

r = 1

r = rm

ηẋh = ξh

τR ≪ τobs

Figure 5. (a) The physical picture that emerges when observing the quark on relatively short time
scales 1/T � τobs � τR. Here we show three subsequent time steps, t1, t2, t3; at each time step
the string fluctuates to a new “trailing string” giving rise to a random force on the boundary. The
average trailing string is perceived as a drag. (b) The physical picture that emerges on very long
time and spatial scales. The horizon diffuses and the string is brought along.

In this limit one can drop the influence of the bulk on the horizon dynamics, i.e. discard
the To∂rx in eq. (6.1) since it is averaged over many different boundary velocities over the
observation time τobs � τR. The string in bulk is perfectly straight on the spatial scales
we are considering. Thus the equation of motion obeyed by the horizon is

ξh

η
=
dxh

dt
. (6.20)

This is the overdamped diffusive limit discussed in section 2.1. The result is that the horizon
endpoint and the boundary endpoint diffuse in lockstep according to the expected rate〈

[xh(t)]2
〉

=
2T
η
t . (6.21)

In summary, we have exhibited the full structure of the thermal noise on a fluctuating
string in AdS/CFT. It is hoped that this will lay the groundwork to study the fluctuations
of gravitons and other fields using the correspondence. The challenge now is to use the
real time formalism in a truly out of equilibrium setting such as studied in ref. [55].
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Note Added. In the final two weeks of preparation, a preprint appeared [56] which ad-
dressed some of the aspects studied here. In particular the stochastic boundary condition
given in eq. (6.1) was determined and the basic conclusion that the horizon diffuses accord-
ing to eq. (6.21) was also reached in this work. It is interesting that the derivation of the
stochastic boundary condition in ref. [56] differs substantially from the presentation given
here. Presumably by marrying the two derivations a deeper understanding of Hawking
radiation will be reached.

A Small fluctuations and the trailing string

The purpose of this appendix is to establish notation and to collect prior results. The
Nambu-Goto action is

S = − 1
2π`2s

∫
dτdσ

√
−dethab . (A.1)

For small fluctuations we parameterize the string as

(τ, σ) 7→ (t = τ, r = σ, x = x(t, r)) , (A.2)

determine the induced metric,

htt =
[−fr2 + r2ẋ2

]
L2(πT )2 , (A.3a)

hrr =
[

1
fr2

+ (πT )2r2(x′)2

]
L2 , (A.3b)

htr =
[
(ẋ)x′r2(πT )2

]
L2 , (A.3c)

and write the action for small fluctuations as

S = −(πT )L2

2π`2s

∫
dtdr

[
1 +

1
2

(πT )2fr4(x′)2 − 1
2
ẋ2

f

]
. (A.4)

In the body of the text we write this as

S = −
∫

dtdr
[
m+

1
2
To(r)(∂rx)2 − m

2f
(∂tx)2

]
, (A.5)

where the local tension is

To(r) =
(πT )3L2

2π`2s
fr4 =

(√
λπ2T 3/2

)
fr4 , (A.6)

and the mass per unit r

m =
(πT )L2

2π`2s
=

√
λT

2
. (A.7)

Then the equation of motion is

w2

f
x+ ∂r(fr4∂rx) = 0 . (A.8)

where, as is customary, we have defined w = ω/(πT ).
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This is a second order differential equation and there are two solutions. Near the
horizon r → 1 the solutions are either infalling (-) or outgoing (+)

(
1− 1

r4

)∓ iw
4

. (A.9)

The solutions near the boundary r → rm consist of a normalizable and a non-normalizable
mode. The retarded solution Fω(r) is the solution which approaches one near the boundary
and is infalling at the horizon. More specifically near the boundary Fω behaves as

Fω(r) =
(

1 +
w2

2r2
+ . . .

)
− B(ω)

3r3
(1 + . . .) , (A.10)

where the ellipses denote terms suppressed by additional powers of 1/r. In evaluating the
motion of the quark we often evaluate the combination

lim
r→rm

To(r)F−ω∂rFω(r) = −Mo
Qω

2 +GR(ω) , (A.11)

where GR(ω) = (
√
λπ2T 3/2)B(ω) is the retarded force-force correlator. The first term

Mo
Qω

2 comes from the “divergent” w2/2r2 term of the real part of the retarded Green
function and we have identified

Mo
Q =

L2(πT )rm
2π`2s

=
r̄m

2π`2s
, (A.12)

as the zero-temperature mass of the quark where r̄m refers to the “canonical” coordinates
in eq. (3.1). That this is the zero temperature mass can also be seen from the leading term
of eq. (A.4).

In general eq. (A.8) can not be solved exactly. However we can set up a perturbation
expansion at small frequencies,

Fω(r) = (1− 1/r4)−iw/4
[
1− iwF (1)

ω (r)−w2F (2)
ω (r) + . . .

]
. (A.13)

Substituting this ansatz into the equation of motion we end up with a hierarchy of dif-
ferential equations. We solve these equations order by order in ω by demanding that the
solution behaves as

Fω(r) =
(

1− 1
r4

)−iw/4
× (regular function at the horizon) . (A.14)

We find
F (1)
ω (r) = −1

2
ln (z + 1)− 1

4
ln
(
z2 + 1

)
+

1
2

arctan (z) , (A.15)

where here and below z ≡ 1/r. At quadratic order we have

F (2)
ω (r) =

∫ 1
r

0
dz
z (1− z) [z ln

(
z2 + 1

)− 2 z arctan (z) + 2 ln (z + 1) z − 4
]

4(1− z4)
. (A.16)
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This solution has a simple physical interpretation. The leading order solution is mul-
tiplied by the position of the tip string xo(ω). Provided we are not exponentially close to
the horizon we can expand the leading (1− z4)−iw/4 factor. This yields the solution

xo(ω, r) ≡ xo(ω)Fω(r) = xo(ω) + v(ω)∆xTS + a(ω)∆xa , (A.17)

where v(ω) = −iωxo(ω) is the velocity of the endpoint, and a(ω) = (−iω)2xo(ω) is the
acceleration of the endpoint. Further we have defined

∆xTS(z) =
1

2πT
[
tan−1(z)− tanh−1(z)

]
, (A.18a)

∆xa(z) =
1

(πT )2

[
1
32

log2(1− z4) +
1
4

log(1− z4)F (1)
ω + F (2)

ω

]
. (A.18b)

The leading term is given by ∆xTS which is simply the “trailing string” solutions of
ref. [17, 19]. Naturally to leading order in the frequency of the sinusoidal oscillation one
simply recovers that the string trails behind the head of the quark with the expected form.

The subleading term is described by the acceleration ∆xa. A graph of this function
is given in figure 6 and has a simple interpretation. Consider sinusoidal oscillations: when
the head of the quark is moving forward and undergoing negative acceleration, the body
of the string travels ahead of the trailing string solution due to inertia. Thus −∆xa should
be positive as r → ∞ reflecting the fact that the displacement is 180o out of phase with
the acceleration. This inertial effect is indicated by the 1/2r2 curve in figure 6. The
dynamics close to the horizon stems from expanding out the leading (1− z4)−iw/4 factor.
The (1−z4)−iw/4 behavior near the horizon has the interpretation that the string endpoint
on the stretched horizon is overdamped.

Using the solutions given above, we can expand these functions close to the boundary

Fω(r) =
(

1 +
w2

2r2
+ . . .

)
+

(iw−w2)
3r3

(1 + . . .) , (A.19)

and determine the retarded force-force correlator

To(r)F−ω∂rFω = −Mo
Qω

2 +GR(ω) , (A.20)

= −Mo
Qω

2 − iωη − ω2∆M . (A.21)

Here we have defined the transport coefficient

η =
1
2

√
λπT 2 , (A.22)

first computed in ref. [17–19] and the in-medium mass shift

∆M = −
√
λT

2
, (A.23)

first computed in ref. [17]. The fact that the mass shift is negative stems from the over-
damped motion of the horizon endpoint. Also used in the text is the kinetic mass

Mkin ≡Mo
Q + ∆M . (A.24)
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1/2r
2

a

Figure 6. The deviation of the string position from the trailing string solution (in units of
|a(t)|/(πT )2) during slow sinusoidal acceleration of the boundary endpoint. Here the accelera-
tion is negative and the quark is moving forward. More specifically we are plotting −(πT )2∆xa
given in the text.

B Notation for the Kruskal plane

In this appendix we establish notation for the Kruskal variables used in the body of the
text. We first define r∗(r)

r∗(r) =
1
πT

∫ r dr

f(r)r2
=

1
2πT

tan−1(r) +
1

4πT
ln(r − 1)− 1

4πT
ln(r + 1) . (B.1)

Then U and V are defined by the relations

t =
1

4πT
log(V )− 1

4πT
log(−U) , (B.2a)

r∗ =
1

4πT
log(V ) +

1
4πT

log(−U) . (B.2b)

The near horizon behaviors of ν− ≡ t+ r∗ and ν+ ≡ t− r∗ are

ν− ' t+
1

4πT
log(r − 1) , (B.3a)

ν+ ' t− 1
4πT

log(r − 1) . (B.3b)

Also note that −UV is a simple function of r

(−U)V = e4r∗πT =
r − 1
r + 1

e2 tan−1(r) . (B.4)
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